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We consider superspaces with fermionic coordinates belonging to representations 
of the Lorentz group other than spin 1/2. A general diagrammatic method is 
introduced which facilitates the identification of the various component fields 
comprising the superfields. Explicit examples of superfields with ferrnionic coordi- 
nates belonging to (1, 1/2)+ (1/2, 1) and (3/2, 0)+(0, 3/2) representations of 
the Lorentz group are worked out in detail. 

1. INTRODUCTION 

To date, all supersymmetries (Fayet and Ferrara, 1977; Salam and 
Strathdee, 1978; Nieuwenhuizen, 1981) employed in field theory are based 
on spin-l /2 fermionic generators which belong to the (1/2, 0 )+(0 ,  1/2) 
representation of  the Lorentz group. The use of  fermionic generators belong- 
ing to spins greater than one-half is forbidden by the theorem of  Haag, et 

al. (1975). In this paper the assumptions underlying the theorem of  Haag 
et aL are relaxed and a consistent supersymmetry algebra with generators 
belonging to the (1, 1 /2 )+  (1/2, 1) representation of  the Lorentz group is 
given. The starting point is the theorem of  Coleman and Mandula (1967). 

The Coleman-Mandula theorem states that for a symmetry to be a 
symmetry of  the S-matrix, the generators (bosonic) of  the symmetry must 
close on the four-vector P , ,  the tensor of  rotations and boosts M~,v, and a 
set of scalar charges Bz of  an internal symmetry group. This theorem is 
supplemented by the theorem of  Haag et al., which states that in a theory 
consisting of  massive particles, the bosonic and fermionic generators must 
close on P~, Muv, Bz, and a further set of charges (Haag et al., 1975) for 
the fermionic generators. The theorem restricts the fermionic generators to 
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the (1/2, 0) + (0, 1/2) representations of the Lorentz group. The arguments 
leading to this restriction run as follows. A fermionic generator Qs and its 
Hermitian conjugate Qs belong to the same algebra and satisfy the anticom- 
mutation relation 

{Qs, Qs} = ~  axT~s (1.1) 
x 

where T x are all possible covariant terms and a~ are coefficients restricted 
by the closure of the algebra. The principal assumption in the theorem is 
that all T x in equation (1.1) belong to spin 2S, since one is dealing with an 
anticommutator of Qs and Qs. Since the Coleman-Mandula theorem 
requires that the anticommutator close on the generators of the Poincar~ 
group and a set of scalar charges, it follows that 2S is either zero or one and 
hence the maximum value of S equals one-half. 

It is the last assumption that we have relaxed. Our criterion of an 
admissible fermionic generator to be a generator of the symmetry of the S- 
matrix is that its anticommutator must close on terms that respect covariance 
and the symmetry properties of the anticommutator. The T ~ are all propor- 
tional to Pu and the rest of the symmetry resides in the a~. We have demon- 
strated this explicitly in the case of vector spinor generators Qua belonging 
to the (1, 1 /2)+ (1/2, 1) representation of the Lorentz group (Pilot and 
Rajpoot, 1989). It now remains to show that this algebra leads to a super- 
space (Salam and Strathdee, 1974a,b; Ferrara et al., 1974), and, in particular, 
to determine which component fields are represented in the multiplet. 

There are at least two ways to find the particle content in a higher- 
spin supersymmetry theory. One involves the Wigner method of induced 
representations (Salam and Strathdee, 1974a,b; Ferrara et aL, 1974, 1981). 
It is a straightforward method, but does not allow for generalizations to 
other higher-spin supersymmetries if the algebra is not given a priori. The 
second method is based on a 0 expansion; this approach does not require a 
priori knowledge of the algebra and can be universally applied if a higher- 
spin supersymmetry is otherwise known to be consistent. We shall concen- 
trate on the second approach and determine the component fields for a spin 
(1, 1 /2)+ (1/2, 1) superfield. We will then also apply this approach to the 
(3/2, 0)+ (0, 3/2) case. Although the latter supersymmetry has yet to be 
shown to exist, we proceed as if its existence had already been demonstrated. 
We wish to illustrate a method with a minimum number of indices and the 
second example lends itself readily to a demonstration of this sort. We 
emphasize, however, that any results based on the second example is a purely 
mathematical exercise at this point--nothing more. 

The organization of this paper is as follows. In Section 2 we develop the 
superspace formalism for the (1, 1/2) + (1/2, 1) case explicitly. The algebra is 
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known, i.e., has been worked out, and the steps leading to the left- and right- 
handed chiral superfields are given. In Section 3 the expansion in 0 variables 
is determined for this particular case using diagrammatic arguments. Finally, 
in Section 4, we assume a valid superspace exists for the (3/2, 0) + (0, 3/2) 
case and apply the above-mentioned method to this example also. From 
these examples it should be clear how to generalize the diagrammatic method 
to any arbitrary higher-spin superfield. 

2. (1, 1/2)  + (1/2,  1) S U P E R F I E L D  

Let Q~ represent the (1, 1/2)+ (1/2, 1) fermionic, i.e., supersymmetric, 
generator; Pa, the four-dimensional translation generator; and M~b, the 
four-dimensional rotation generator. The algebra which has been shown to 
close under the Jacobi identities is as follows: 

[Mab, Mcd] = -- i( rlacMbd- rladMbc + rlbgmac- TlbcMad) (2.1) 

[M~b, Pc] = - i( TlacPb -- 7?bcP~) (2.2) 

[M~b, Q,~] = ( - i / 2  )( ~'abQc)~ - i( 77~cQba -- 71bcQa,~) (2.3) 

[Mab, Q~] = ( +i/2)(QcT~b) ~ - i( q,cQ~ - ~bcQ2) (2.4) 

[Pa, Pb] =0 (2.5) 

[Pa, Qb,~]=O=[Pa, 0~] (2.6) 

{ aaa, O#b }=a[o,~bP,~a--�89 + ~/bPa)aa + (3i/5)gab~d(~/cTs)a~P d] (2.7) 

The Qa~ is assumed to be Majoranic, i.e., Q a , f =  (CQar)~ = Qaa. Further- 
more, being a (1, 1/2) + (1/2, 1) charge, it is transverse in spinor space, i.e., 
obeys the identity (~aQa)~ = 0. 

Associated with the irreducible vector-spinor charge Q~ are the vector- 
spinor coordinates 0a~. The vector-spinor coordinates belong to the irre- 
ducible (1, 1/2)+ (1/2, 1) representation of the Lorentz group and are 
Majorana spinors, 

0~,~ ---- (COr~ ),~ (2.8) 

Since the 0 coordinates are Grassmannian, they obey the following relations: 

{Oaa, Ob~} =0 = {0a~, Ob p} (2.9) 

The superspace is taken to consist of the four bosonic coordinates xa 
and the 12 fermionic coordinates 0a~. These coordinates can collectively be 



1592 Pilot and Ra]poot 

referred to as Z; a superfield on this superspace is denoted by ~(Z)  and is 
related to ~(0) by exponentiation: 

q~(Z) = ~(xa, 0a~) = e *~ e~176176 0) 

= e XaPa -}- OaOa~(O, O) (2.10) 

where we have used the commutivity of P, with Q~ to arrive at 
equation (2.10). 

Next, we introduce a supersymmetric transformation operator acting 
on ~(Z)  which will take q)(Z) to ~(Z') .  One can write 

e z" = e ~~176 e z (2.11) 

where the ~-,act is an anticommuting, Majorana spinor parameter. As with 
any (1, 1/2)+(1/2, 1) irreducible spinor, the general property ) , ~ , = 0 =  
~a~/a holds. 

Equation (2.11) can be simplified using the algebra given in equations 
(2.1)-(2.7). Using equation (2.11) and the identity 

e A e s = e A + s + EA,BI/2 (2.12) 

where A and B are arbitrary operators, one can show that 

exp(gaQa) exp Z = e x p { g ~ Q a +  x~Pa+ ~aQ~+ �89 ObQb]} (2.13) 

Furthermore, the commutator on the right-hand side can be worked out 
using equation (2.7); one obtains after some Dirac algebra 

[ ~ Q ~ ,  ObQbl = ga{Qa, Ob}O b 

= a[~OpOa + 3ieabcagaTcTsobp d] (2.14) 

where we have used the property that ~zaOa = 0 = ~a~z a . 

The second term on the right-hand side of equation (2.14) can be further 
simplified by using the identity 

~'abe =- igabcdTd 75 

= l{~/ab,  7c}  = -- •bac = + ~/bea (2.15) 

Again after some Dirac manipulation, a remarkable simplification results 

3 . . . .  d _ ipdgo{ ,o , 7 }0 ~leabcag y 7 5 0  P = 

= 3 ( pagbT c lOb  + PagaTaOa)  

3-a =~e  pOa (2.16) 
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By substituting the result of equation (2.16) back into equation (2.14), we 
obtain 

[ gaQa, ~b Qb ] = 8 agb ~,aObpa (2.17) 

Therefore equation (2.13) now reads 

exp(gaQa) exp Z=exp{(xa+  ~bTaOb)P,,+ (oa+ ~)Qa} (2.18) 

where the coefficient a has been set equal to unity without loss of generality. 
A supersymmetrically transformed superfield can thus be expressed as 

1 gb a 0 (b(Z')=eZ'~(O, O)=~(Xa+ ~ 7 b, O~+ g~) (2.19) 

where we have allowed equation (2.18) to operate on ~(0, 0). One sees that 
we have not only a translation in spinor space, but also an ordinary space- 

I - b  az~ time translation of the amount ~ e ), Vb. Following customary procedure, 
we next expand (2.19) in a Taylor series about the point (x ~, 0~) to obtain 

cl)(Z') = ~b(Z) + g'da~b(Z) + �89 gbr (2.20) 

The spinor partial derivatives d~a are defined as daa = O/c~0 ~.  
The action of a supersymmetric variation with infinitesimal parameter 

ea~ can now be ascertained from equation (2.20). The result reads 

fi( g~Qa)~(Z) = ~ ( Z ' )  - ~ ( Z )  

= (~ada+ �89 ) ( 2 . 2 1 )  

A supersymmetric covariant spinor derivative can be found using the above 
(1, 1/2) + (1/2, 1) transformation law. It assumes the explicit form 

h~ _d~ _�89 ~ b ~(7~0 )~Ob (2.22) 

and one can easily demonstrate that the covariant derivative of a superfield 
transforms as the superfield itself, with the help of a little Dirac algebra. 

We can also show that the anticommutator of (2.22) gives 

{D~a, DbB} = CaBqab-- 14(~/a~b + ~'b~a)aB (2.23) 

Note that the result is symmetric under simultaneous interchange of (a ~ b) 
and ( a ~ f l ) .  From (2.23) it follows that 

D~Db - (a~-~,b) = 0 (2.24) 

Therefore 

D a ( L ) D b - ( a * - - ~ b ) - D a ( ~ ) D b - ( a * - - ~ b ) = O  (2.25) 
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We allow this identity to act on an arbitrary superfield: 

Da(L) Dbrb-(a*.+b)=O (2.26) 

From a study of  electrodynamics, specifically how the vector potential fol- 
lows from an antisymmetric field strength, it should be clear that the general 
solution to this equation is 

d~aL = L~a = LDJP (2.27) 

Again the electromagnetic analogue is the vanishing of the field strength, an 
antisymmetric tensor, from which the general solution for the vector poten- 
tial follows. We have demonstrated this for the left-handed superfields; the 
same can be demonstrated for the right-handed superfield. We see that 
instead of the ordinary left- and right-handed scalar chiral superfields in the 
(1/2, 0 )+(0 ,  1/2) case, we now have left- and right-handed vector chiral 
superfields for the (1, 1 /2 )+  (1/2, 1) case. 

3. EXPANSION IN THE (1, 1/2) VARIABLE 

In equation (2.8) we introduced the (1, 1/2) + (1/2, 1) coordinate Oact 
associated with Qaa. Like Qaa, it is transverse in spinor space, i.e., 7a0~ = 
0, and represents 12 components. The Majoranic 0a~ can be written in 
SL(2, C) ~ Weyl spinor formalism as 

Oaa:(  O(AB.~ ) I (3.1) 

where O(Ase) (0 *Oac~) are the left (right)-handed chiral projections of 0aa. 
In SU(2)x  SU(2) notation these are the (1, 1 /2 )+(1 /2 ,  1) components, 
respectively. They are transformed into each other by parity transformations. 

The 0 ~  are anticommuting coordinates, as seen from equation (2.9); 
written out in SL(2, C) formalism, we claim that 

{ O(ABC), 0 (DEF) } = 0 
{ 0 *(~c~, 0 (~ } = 0 

(3.2) 
{ O(ABr 0*(oEe~} = 0 

{ 0 *(A~e~, 0*(oEe~} = 0 

where the indices A, B . . . .  = 1, 2 and A,/~ . . . .  = i, 2 are SL(2, C) Weyl 
indices. 

In ordinary spin (1/2, 0) + (0, 1/2) SUSY an anticommuting 0~ implies 
that a superfield q~(x, 0) can be expanded in a finite power series in 0. The 
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same holds for our new superfield ~(X,  Oa) , where now the anticommuting 
0aa must be used. To keep things as transparent as possible, we consider 
only a left-handed chiral multiplet where the expansion variable is 
O(ASe) = (LOa)a. This projection represents only six components. 

To find which fields are represented in a (1, 1/2) supermultiplet, we first 
have to find those bilinear, trilinear, quartic . . . . .  terms in (LOa),~ = O(Ase) 
that are irreducible. We expect for (LOa), ( L O J ,  (LOa) 3 . . . .  the following 
number of  irreducible components. (LOa)" gives (6)= 6! [n! (6 -n) ! ]  -1 irre- 
ducible components. For example, (LOa) 4 implies 15 irreducible component 
fields. (L0a) 7 and higher powers vanish because of the nilpotency of  spinors. 
There is no way to antisymmetrize successfully a six-component field seven 
times. 

We now give the result, leaving the proof  for the subsequent discussion. 
The result is 

~) L = ~)1 -F o( ABC') ~O1( AB~) AV o( ABC) O ( ABr ~)2 

--[- o( ABE) o( CDE) ~)2( ABCD ) .-~ o(AEC) O( BED ) ~)2( AB~I~ ) 

t3(DFA)t3 EB),o C') . . . . .  
-F ,J V(D V(EF ~2(ABC) 

-[- o(AFD ) o(BE~) )O(EFC) q)2(ABC) 

~- o(ABG) o( CFE) O(DFO)~O2(ABCDE, ) 

-~- o( ABE) O ( BCF) o ( cD~,)O (D AF) ~)3 

-F o(AHE)o(BF~)o(CG)O(DHG)~3(ABCD ) 

o(AHE)o( BF . ~ Gd)l?~ D).,A . .  -~- E),J(F U(GH tY3(ABCD) 

[I(ADH)I](BEI)[ ~ F. l] GC)13 . . . .  
-F Le V t"(D l)t"(F ~(GEH)~X3(ABC) 

-F o ( A #  )O(BAB)O(%C)OfDcA )O(EDB)O(FBe)~) 4 (3.3) 

In the above ~bl, ~2, r and ~4 are spin-(0, 0) scalars; ~OI(ABC), ~02(ABC), and 
~03(AB~') are spin-(l, 1/2) spinors: ~b2(ABCD) and C~3(ABCD) are spin-(2, 0) con- 
formal tensors; ~2(ASeb) and ~b3(ABeZ~) are symmetric spin-(l, 1) tensors; 
qh(,~ae) is a spin-(0, 3/2) spinor; and, finally, r is a spin-(2, 1/2) 
spinor. All tensors are designated by ~b.. and are characterized by an even 
number of  symmetrized SL(2, C) indices. Al l  spinors are designated by qL. 
and have an odd number of symmetrized Weyl indices. Even powers of  
0(ABe) in (3.3) always have bosonic components associated with them; an 
odd number will lead to fermionic components. As in any supersymmetric 
theory, the total number of fermionic components equals the total number 
of bosonic ones. In this case we have 32 + 32, giving a total of  64 components. 
The fields in expansion (3.3) can be given in the order of increasing 0 as 
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they occur in (3.3). We have in SU(2) • SU(2) notation 

(0, 0)/(1,  1/2)/(2, 0)+  (1, 1) +(0, 0)/(2, 1/2)+(1,  1/2) +(0, 3/2) 

1 6 5 + 9 + 1  1 0 + 6 + 4  

(2, 0)+(1,  1) +(0, 0)/(1, 1/2)/(0, 0) 
(3.4) 

5 + 9 + 1  6 1 

The number of components associated with each field is specified below the 
field in (3.4). In general in SU(2)• SU(2) notation, the total number 
of components represented by (jl , j2) is given by (2j+l) ,  where 
IJ~-j2l<j<_ (jl +j2)- With (3.3) and (3.4) we have reproduced the results 
of previous work by means of a new but equivalent method. 

We now prove that the expansion given by (3.3) is unique. We start 
with the bilinear form in (LOa),~. Initially we have a total of 6 x 6 or 36 
components for a bilinear form in 0(ASe). They are given in SU(2) x SU(2) 
formalism as 

(1, 1/2) • (1, 1/2) = (2, 1) + (2, 0) + (1, 1) + (1, 0) + (0, 1) + (0, 0) (3.5) 

The first term on the right-hand side corresponds to zero contractions in 
SL(2, C) indices between the O's, the second to one dotted contraction, the 
third to one undotted contraction, the fourth to one dotted and one undotted 
contraction, etc., until no more contractions are possible. 

Next we consider each of the products in turn. The first, (2, 1), implies 
a symmetrized product in (ABCDEF) ,  but 

o(ABC) o(DEF) ~)(AB~DE~, ) ~ -- o(DEfl') o( ABd') dt~(AB~DEIk, ) 

= -- o(ASC)o(DEP)q~(DEp~Sd) (3.6) 

In the first line we have used (3.2a) ; in the second we have relabeled indices. 
Clearly the vanishing result is because the indices are symmetrized for ~b. [All 
irreducible fields in SL(2, C) notation are characterized by fully symmetrized 
indices; otherwise they are reducible.] 

The second product, (2, 0), implies one dotted contraction. We obtain 

o(ABC)O(AEP) ~)(BE~,~,) = -- O(AE~')o(ABC) ~)(BE~P) 

= + o(AF-:)O(A~e)qb(BEe/:) (3.7) 

which does not vanish. The third product on the right-hand side of 
(3.5) does not vanish, for similar reasons. But the fourth gives 

o( ABd) O(DBd)~(AD) ~-- -- O(DBI~)O(ABd) ~)(AD) 

= - o(D~E)O(Ase)ga(AD) = 0 (3.8) 

Continuing this fashion demonstrates that only the bilinear forms contained 
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in (3.3) are nonvanishing. Because of the antisymmetry of the 0~ABC) upon 
interchange with another 0<z)E;), we note that all zero and even-numbered 
contractions must vanish. 

We now associate with every 0~.4~c) a blob: 

A B 
\ / 

0~Aae) ~ ~ ' /  (3.9) 

I 
I 
I 

where solid (dashed) lines represent undotted (dotted) indices. What kind 
of fully symmetrized Weyl field can be obtained if one contracts one 
0<ABe) with another 0wee)? The analysis above indicates that only an odd 
number of contractions between any two 0's (or blobs) is viable. The result is 

(1, 1/2) x (1, 1/2) 

A A 

= + _ -  + O_B_ - _B_L) 

' ' C D J 

(3.10) 

There are no others. At least one contraction is always necessary in order to 
antisymmetrize. Expansion (3.3) shows that these are exactly the represented 
bilinear terms in 0. The fields associated with these bilinear forms are charac- 
terized by the exposed indices in (3.10): (AB(Sf)), (ABCD), and (--). 

We continue the analysis using this diagrammatic method. Consider the 
trilinear forms in (LOa). Antisymmetrizing gives 

(1, 1/2) x (1, 1/2) • (1, 1/2) 

A /~ 

F E 

! 
I 

A B A B E  C- 

+ F - - "  E + 

i 
c D 

(3.11) 
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These are the only odd-numbered contractions which are possible between 
any two O's. Also all O's are necessarily contracted at least once in order to 
antisymmetrize. The exposed fully-symmetrized indices characterize the 
fields associated with these trilinear forms. These are given in equation (3.3) 
as the "coefficients" of the (L0a) 3. 

This line of development can be continued. The following results must 
hold. First the quartic terms give 

(1, 1/2) x (1, 1 /2)x (1, 1/2) x (1, 1/2) 

A B A B 

A ( . . ~ ~  + H '  - - -  F + H . . . .  F 

H F H F a 

D C b C 

(3.12) 

These are represented with their associated fields in the expansion given by 
equation (3.3). No two individual blobs or O's are contracted more than 
twice with each other. There are no other quartic terms possible. 

For (LOa) 5 we obtain 

(1, 1/2) • (1, 1/2) x (1, 1/2) • (1, 1/2) x (1, 1/2) 

A 

~--. . | ' 

G 

B 

.4  

i F 
r' 
I 

I_ 

C 

(3.13) 
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This term is given in (3.3) along with the (L0,) 6 term. For the latter one 
obtains 

t "'v" / 

This concludes the discussion of the expansion in O(ABe). 

4. A (3/2, 0) + (0, 3/2) SUPERSPACE 

We consider a superspace characterized by 

ZM: (xo, O~abl~) (4.1) 

where O[,,b]a is a (3/2, 0) + (0, 3/2) antisymmetric tensor-spinor coordinate. 
Associated with this coordinate will be an antisymmetric tensor-spinor 
generator O[ab~,~ having the same irreducible components. 

It is known that an arbitrary antisymmetric tensor-spinor 

~'~[ab]ct -'~ --  ~'~[ba]a 

can be uniquely decomposed into irreducible components under S0(1,  3). 
The f2[ab]~ could represent coordinates, generators, fields, etc. Let us define 

- ( ~ , a b ~ b )  

f2, --- (7~7'a~d) (4.2) 

~,~b = (?'a6Y ca+ 3Tcd~'ab)~cd 

These will be shown to be, respectively, the spin-(I/2, 0)+(0,  1/2), the 
spin-(l, 1 /2)+(1/2 ,  1), and the sp in-(3 /2 ,0)+(0 ,3 /2)  components in 
SU(2) x SU(2) notation. We have in (4.2a)-(4.2c) 4 + 12 + 8 irreducible com- 
ponents. Relation (4.2b) obeys ?'a~a = 0, while (4.2c) satisfies 

~'a~ab = 0 = 7ab~b 
~/ac~'~eb = - -  f iab  (4.3) 

The /'a0 is defined as 1/2[~,~, }%], so that/,~7b = r/~b+ 7~b, in general. 
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In Weyl SL(2,  C)  formalism, the irreducible components represented 
by (4.2a)-(4.2c) are 

fL~ = (L~)~  = (1/2, 0) 

~*~ = (Rn)~  = (0, 1 / 2 )  

n(A~a~ = (LO,) a = (1, 1/2) 

f~,(,iA~) = (Rfla)a = (1/2, 1) 

and 

(4.4a) 

(4.4b) 

(4.5a) 

(4.5b) 

fi(~Bc) = (Lfi,,b),~ = (3/2, 0) (4.6a) 

~ * (  ABr = ( R f i a b )  a = (0, 3/2)  (4.6b) 

We have assumed that the O's are Majoranic. 
The decomposition (4.2) is based on the identity 

(~cd y; fl - I c d d c fl 
ab~a  = 2((~a (~b - -  (~a(~b)(~a 

= - - l ( ~ Z a b r C d ) a  fl + �88 d -  TdTab~Z~)a a 

2~(YabyCa+ ca 3 7  r a b ) a  (4.7) 

We note that the set of indices "ab"  can be reversed with the set of indices 
"cd"  within the second bracketed term on the right-hand side of  (4.7). This 
will not change the result. Using (4.7) with (4.2), it is easily shown that 

~'~[ab]a = --  1~( ~Zab~'~ )a  @ 1 ( ~Z a~-~b __ ~/b~,~a ) ct --  ~4f iaba (4.8) 

This decomposition (4.8) is unique. Defining the projection operators 

(el)oU 
(Pz)at ,Cd ~ + 14(~/C~'ab~/d-- ~/d~/ab~/C ) (4.9) 

(P3)ab ~d = - ~(Yab 7 ca + 3 ~fayab) 

then we can write (4.8) as 

~')at, = ( P 1  g'2 )at, + (P2 ~'~ )ab + (P3 ~'~ )ab (4.10) 

or  P1 + P2 + P3 = 1. Furthermore, since 

PiPj=fiijPj,  i , j = l , 2 ,  3 (4.11) 

then the P's form a complete, normalized, and orthogonal 
decomposition. QED 
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Going back to equation (4.1), the Otabla is to represent 

(3/2, 0) + (0, 3/2) 

components. [The (1, 1/2)+ (1/2, 1) components were treated previously, 
so a superspace based on these coordinates need not be considered here.] 
Properly speaking, the 0rabl~ in (4.1) is defined by a relation analogous to 
(4.2c); we have dropped the tilde for simplicity. In what follows, we are 
dealing exclusively with (3/2, 0) + (0, 3/2) coordinates. Also, relations simi- 
lar to (4.3) must hold for our new irreducible coordinates. The OI~bl,~ anti- 
commute, being true spinors [odd number of symmetrized SL(2, C) indices]. 
Hence, { O~ab~, OI~,~} = O, or in SL(2, C) notation 

{ O(ABC), 0 (DEF)} =0, {0 :~(A/~e), 0 (DEF)} =0 
(4.12) 

{0(~), O*(~e)} =0, {0 *(~e), 0"(~)} =0 

The anticommuting O's will guarantee a finite number of terms in an expan- 
sion about 0. 

5. EXPANSION IN 0 (•nc) 

We wish to generate a superfield O(xa, O(A,c)) based on an expansion 
in O(ABC). TO keep things as simple as possible we consider only a left- 
handed (3/2, 0) chiral superfield. Remember that (LOEabl) equals O(ASC) by 
relation (4.6). 

Proceeding analogously to the (1, 1/2) case, we seek those bilinear, 
trilinear, quartic, etc., terms in O(A,C) that are irreducible. We expect for 

2 3 O(ABC), O(ABC), O(ASC), etc., the following number of irreducible 
components: (O(ABc)) n gives (4) = 4! [n! (4-- n)!]- 1 irreducible components. 
In all, we therefore expect 1 + 4 + 6 + 4 +  1 or 16 components. The O(Asc) 
represent four independent components; written out these are 0(111), 
0o12), 0(122), and 0(222). These can only be antisymmetrized a certain way, 
depending on the power of 0, because of the anticommutator (4.12a). 

The result of this antisymmetrization in O(Asc) is given next, with the 
proof in the subsequent discussion. A (3/2, 0) chiral superfield can be 
expanded as 

(~L(Xa, O(ABC)) = •1 + o(ABC)(P1(ABC) + o(ABC)O(ABC)r 

+ O(ABE)o(ECD)(p2(ASCD) 

+ o(ADE)O(BDF)O(CEF)~O2(ABC) 

+ o(ABC) O(ADE)O(BDF)O(CEF)r (5.1) 
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where the ~'s are bosonic components (even number of O's) and the (o's are 
fermionic components (odd number of O's). In SU(2) x SU(2) notation the 
fields given by increasing powers of O<ABC) in (5.1) are 

(0,0) / (3/2, O) / (2, O) + (0, O) / (3/2, O) / (0, O) 
(5.2) 

1 4 5 + 1  4 1 

We have three scalars, two spin-(3/2, 0) fields, and one (2, 0) conformal 
tensor field. In (5.2) we have also specified the number of irreducible compo- 
nents associated with each field by the numbers given below the fields. 

We prove equation (5.1) using the diagrammatic formalism developed 
in Section 2. We associate with each O<ASC) a blob: 

A B 
\ / 

O~ABC) ~- ~ (5.3) 

C 

where each solid line represents an undotted SL(2, C) index. Only undotted 
indices need be considered here. Now consider the various products of 0, 
keeping in mind that only an odd number of contractions are possible. An 
even-numbered contraction will always lead to a vanishing result because of 
the anticommuting nature of the O's. For a bilinear term in 0, 

A C 

A A  ~EE~ 
(3/2,  o) • (3/2 ,  o) = + (5.4) 

C C 

B D 

These are the only possibilities and lead to the (0, 0) + (2, 0) fields, respec- 
tively, given in (5.1). The trilinear term in 0 gives 

A B 

(3/2, 0) • (3/2, 0) • (3/2, 0) = F E (5.5) 

C 
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This is the only possibility and renders the ~(Asc) field in (5.1). No two 
individual O's can be contracted twice or more with respect to each other. 
A term such as 

c> t )  

A B (5.6) 

C 

is inadmissible because the third 0 is not antisymmetrized, i.e., contracted. 
Finally, the quartic term gives 

(3/2, 0) • (3/2, 0) x (3/2, 0) • (3/2, 0) = ~ (5.7) 

This is the only possibility and leads to the ~b3 field given in (5.1). 
We still have to give the parity content for the fields introduced in a 

spin-(3/2, 0) superfield expansion. Under parity the spin fields given by (5.2) 
transform naively as follows: 

(j, ,j2) --+ (-)(J'-J2)(j2 ,j,) 
(5.8) 

( j , j )  --+ 4- ( j , j )  

where the + ( - )  refers to the ordinary (pseudo) tensor. One might naively 
expect (0, 0) • (3/2, 0) • (2, 0) • + (0, 0) • (3/2, 0) • and (0, 0) • where 
the superscripts refer to the factor given in front of the right-hand side of 
(5.8). The O's, however, twist the parity content because they are fermionic. 
Applying the parity operator twice in succession on a spinor gives minus 
one, i.e., a revolution of 47r is necessary to bring the spinor back into itself. 
Since the superfield has to remain a scalar or pseudoscalar, a twisting of the 
O's, must imply an untwisting of the component fields, the "coefficients" of 
the O's. This gives 

(0,0) • (3/2,0) • (2, 0) ~ + (0, 0) =~, (3/2,0) +*, (0,0) :F (5.9) 

as the spin/parity content for the (3/2, 0) superfield. The spin/parity content 
for the (1, 1/2) superfield (an expansion about 0(ABe)) need not be repro- 
duced here. It has been worked out in a previous paper (Pilot and Rajpoot, 
1988) using more formal arguments. 
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Summarizing, it should become apparent that any higher-spin fermionic 
coordinate, e.g., a (2, 1/2) O(ABCD~) or a (5/2, 0) O(ASCDE), will give afinite 
power series expansion in 0. Furthermore, the component fields associated 
with these superfield expansions are readily found using the diagrammatic 
(blob) technique. 

Perhaps these added fermionic symmetries will improve on the re- 
normalizability of ordinary gravity. For grand unified theories the increased 
particle content may prove interesting. 
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